14 research outputs found

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    A Fuzzy-Wavelet Neural Network Model for the Detection of Meat Spoilage using an Electronic Nose

    Get PDF
    Food product safety is one of the most promising areas for the application of electronic noses. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). This paper proposes a fuzzy-wavelet neural network model which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modeling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results indicated that the proposed modeling scheme could be considered as a valuable detection methodology in food microbiolog

    Day ahead hourly Price Forecast in ISO New England Market using Neuro-Fuzzy Systems

    Get PDF
    Accurate electricity price forecasting is an alarming challenge for market participants and managers owing to high volatility of the electricity prices. Price forecasting is also the most important management goal for market participants since it forms the basis of maximizing profits. These markets are usually organized in power pools and administrated by the independent system operator (ISO). The aim of this study is to examine the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting in the ISO New England market. The implemented model has been developed with two alternative defuzzification models. The first model follows the Takagi–Sugeno–Kang scheme, while the second the traditional centre of average method. A clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of rules in the network. Simulation results corresponding to the minimum and maximum electricity price indicate that the proposed network architectures could provide a considerable improvement for the forecasting accuracy compared to alternative learning-based scheme

    Electricity Price Forecasting using Asymmetric Fuzzy Neural Network Systems

    Get PDF
    Electricity price forecasting is considered as an important tool for energy-related utilities and power generation industries. The deregulation of power market, as well as the competitive financial environment, which have introduced new market players in this field, makes the electricity price forecasting problem a demanding mission. The main focus of this paper is to investigate the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting. The proposed model has been developed from existing Takagi–Sugeno–Kang fuzzy systems by substituting the IF part of fuzzy rules with an asymmetric Gaussian function. In addition, a clustering method is utilised as a pre-processing scheme to identify the initial set and adequate number of clusters and eventually the number of rules in the proposed model. The results corresponding to the minimum and maximum electricity price have indicated that the proposed forecasting scheme could be considered as an improved tool for the forecasting accuracy

    Neuro-Fuzzy based Identification of Meat Spoilage using an Electronic Nose

    Get PDF
    Freshness and safety of muscle foods are generally considered as the most important parameters for the food industry. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). An adaptive fuzzy logic system model that utilizes a prototype defuzzification scheme has been developed to classify beef samples in their respective quality class and to predict their associated microbiological population directly from volatile compounds fingerprints. Results confirmed the superiority of the adopted methodology and indicated that volatile information in combination with an efficient choice of a modeling scheme could be considered as an alternative methodology for the accurate evaluation of meat spoilag

    An Extended NRBF Model for the Detection of Meat Spoilage

    Get PDF
    A fast non-invasive detection of spoilage microorganisms in meat, using Fourier transform infrared spectroscopy (FTIR) and Extended Normalized Radial Basis Function neural networks has been proposed in this paper. The aim is to associate spectral data with microbiological data (log counts), for Total Viable Counts, Pseudomonas spp., Lactic Acid Bacteria and Enterobacteriaceae by predicting their micro-biological population from FTIR spectra. The dimensionality reduction of spectral data has been explored by the implementation of a fuzzy principal component algorithm, while produced results confirmed the superiority of the proposed method compared to multilayer perceptron neural networks used recently in the area of food microbiology

    An Asymmetric Neuro-Fuzzy Model for the Detection of Meat Spoilage

    Get PDF
    In food industry, quality and safety parameters are direct related with consumers’ health condition. There is a growing interest in developing non-invasive sensorial techniques that have the capability of predicting quality attributes in realtime operation. Among other detection methodologies, Fourier transform infrared (FTIR) spectroscopy has been widely used for rapid inspection of various food products. In this paper, an advanced clustering-based neurofuzzy identification model has been developed to detect meat spoilage microorganisms during aerobic storage at various temperatures, utilizing FTIR spectra. A clustering scheme has been utilized as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been used in the fuzzification part of the model. The proposed model not only classifies meat samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also predicts their associated microbiological population directly from FTIR spectra. Results verified the superiority of the proposed scheme against the adaptive neurofuzzy inference system, multilayer perceptron and partial least squares in terms of prediction accuracy

    An Intelligent Decision Support System for the Detection of Meat Spoilage using Multispectral Images

    Get PDF
    In food industry, quality and safety are considered important issues worldwide that are directly related to health and social progress. The use of vision technology for quality testing of food production has the obvious advantage of being able to continuously monitor a production using non-destructive methods, thus increasing the quality and minimizing cost. The performance of an intelligent decision support system has been evaluated in monitoring the spoilage of minced beef stored either aerobically or under modified atmosphere packaging, at different storage temperatures (0, 5, 10, and 15 °C) utilising multispectral imaging information. This paper utilises a neuro-fuzzy model which incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. Initially, meat samples are classified according to their storage conditions, while identification models are then utilised for the prediction of the Total Viable Counts of bacteria. The innovation of the proposed approach is further extended to the identification of the temperature used for storage, utilizing only imaging spectral information. Results indicated that spectral information in combination with the proposed modelling scheme could be considered as an alternative methodology for the accurate evaluation of meat spoilage

    An adaptive neuro-fuzzy identification model for the detection of meat spoilage

    No full text
    In food industry, safety and quality are considered important issues worldwide that are directly related to health and social progress. To address the rapid and non-destructive detection of meat spoilage microorganisms during aerobic storage at chill and abuse temperatures, Fourier transform infrared (FTIR) spectroscopy with the aid of a neuro-fuzzy identification model has been considered in this research. FTIR spectra were obtained from the surface of beef samples, while microbiological analysis determined the total viable count for each sample. The dual purpose of the proposed modelling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from FTIR spectra. The proposed model utilises a prototype defuzzification scheme, whereas the number of input membership functions is directly associated to the number of rules, reducing thus, the curse of dimensionality problem. Results confirmed the advantage of the proposed scheme against the adaptive neuro-fuzzy inference system (ANFIS), in terms of prediction accuracy and structure simplicity. Subsequent comparison against multilayer perceptron (MLP) and partial least squares technique indicated that FTIR spectral information in combination with the proposed modelling scheme could be considered as an alternative methodology for the accurate evaluation of meat spoilage
    corecore